Development of the Idaho National Engineering and Environmental Laboratory Site Profile

Bill Murray
Oak Ridge Associated
Universities Team

April 28, 2004

Purpose of Meeting

- We will discuss the Idaho National Engineering and Environmental Laboratory (INEEL)
 Site Profile.
- We will describe how the Site Profile is used.
- We are asking you for your suggestions and information.
- We want to document your concerns and issues.
- We want to answer your questions.

Energy Employees

Occupational Illness

Compensation Program Act

(EEOICPA)

Department of Labor

Department of Health and Human Services – NIOSH

Oak Ridge Associated Universities Team

ORAU TEAM Program Goals

- We will protect the claimant's privacy.
- We want to process claims accurately, fairly and efficiently.
- We want to work with you to get your input and comments on our work on this project.
- We will avoid conflicts of interest.

Dose

Reconstruction

Occupational Radiation Dose

Occupational Medical Dose

Occupational Environmental Dose

Internal Dose

External Dose

Site Profile documents contain information about the activities and practices at a given Site, focusing on the radiation protection practices.

The Site Profile provides information on:

- Potential radiation exposures
- Radiation sources
- Radiation dosimetry program

- The larger Site Profile documents contain six Technical Basis Documents (TBDs) that focus on specific topic areas.
- The Site Profile and the TBD provide technical guidance to prepare dose reconstructions.

- These are living documents that can be revised when additional information is obtained.
- These documents assist NIOSH in completing the work required for each dose reconstruction.

We use the word "facility" as a general term for an area, building, or group of buildings that had a specific purpose at a site.

"Facility" does not necessarily mean or refer to an "atomic weapons employer facility" or "Department of Energy facility" as defined in the Act.

Site Profiles Support Dose Reconstruction

- Used by health physicists in reconstructing doses.
- Provide site-specific technical information.
- Minimize interpretation of data.
- Are living documents.

General Information

- NIOSH wants your input. You should send your comments directly to NIOSH.
- We are meeting with union representatives at all sites to encourage input.
- You can see the completed Site Profiles at http://www.cdc.gov/niosh/ocas/ocastbds.html.

Developing the Site Profile

- The TBDs are written by subject experts.
- Every TBD is reviewed by NIOSH and the ORAU Team.
- Every TBD is approved by NIOSH and the ORAU Team.

Developing the Site Profile

- Idaho National Engineering and Environmental Laboratory Site Profile team was established in May 2003.
- The Team Leader is Norm Rohrig.
- The TBDs were written by different authors.
- The Site Description, Occupational Medical Dose, Occupational Environmental Dose, and Occupational External Dose TBDs are approved.
- The Introduction and Occupational Internal Dose are in formal review.

Contents of Site Profile

- Purpose and Scope
- Site Description
- Occupational Medical Dose
- Occupational Environmental Dose
- Occupational Internal Dosimetry
- Occupational External Dosimetry

Purpose and Scope

The Site Profile:

- Is used to reconstruct radiation doses to workers at the INEEL Site.
- Covers the time from when the site opened in 1951 to the present.
- Uses claimant-favorable assumptions.

Site Description

- Briefly describes the facilities and processes at INEEL over the years.
- Lists the radioactive materials and radiation sources present.
- Identifies potential internal exposures.
- Identifies potential external exposures.

Idaho National Engineering and Environmental Laboratory

- Testing reactors 52 reactors on site
- Nine major operational areas
- Spent fuel reprocessing
- Waste handling
- Radionuclides mixed activation and fission products, transuranics
- SL-1
- Criticality accidents/Engine tests

Occupational Medical Dose (X-rays)

- How often were chest X-rays taken?
- What equipment and techniques were used?
- What was the radiation dose to specific organs?
- How should this information be used to reconstruct the radiation dose?

Occupational X-ray Dose

- Only X-rays required by the employer are included.
- X-ray equipment used changed over time.
- Older equipment gave off more X-ray.
- This radiation dose is not included in the worker's DOE dose record.

Occupational Environmental Dose (for workers who were not monitored)

Workers who are not radiation workers (badged) can be exposed to radiation from:

- Radioactive materials in the air.
- Radiation sources in buildings.
- Radioactive materials in the work environment.

Occupational Environmental Dose (for Unmonitored Workers)

- Radiation dose inside the body from radioactive materials that are in the air the worker breathes.
 - Releases of Ce-144; I-131; Pm-147; Pu 238, 239, 240; Ru-106; Sr-89, 90; and Y-91 to air on the site.
 - Criticality events

Occupational Environmental Dose (for Unmonitored Workers)

- Radiation dose from radioactive materials that are outside the worker's body but are in the worker's environment.
 - Radiation sources in buildings.
 - Radioactive materials in storage areas, waste pits, on the ground and on other surfaces.
 - Measured at 10 locations

Occupational Environmental Dose

(for Unmonitored Workers)

Internal radiation dose

- Calculate the amount of radioactive material taken into the body the from the concentration in the air.
- Calculate the radiation dose to specific organs.

External radiation dose

- Calculate the radiation dose to the whole body from radiation sources that are outside of the body.
- Calculate the radiation dose to specific organs.

Occupational Environmental Dose (for Unmonitored Workers)

- Provides instructions for reconstructing doses.
- This environmental dose is not included in the worker's DOE dose record.

Occupational Internal Dosimetry

- Methods and practices
- Sources of exposure
- Minimum detectable activity (MDA) for:
 - Whole Body Counting
 - Urinalysis
- Reporting levels
- Instructions for reconstructing dose

Internal Dosimetry

- Bioassay program started in 1952.
- Air monitoring, facial contamination and nose swipes were done.
- Urine was tested for gross beta and gamma, then analyzed for specific radionuclides.
- Measured gamma-emitting radioactive materials inside the body with whole body counter from 1961 on.

Occupational External Dosimetry

- Methods and practices
- Sources of exposure
- Adjustments to recorded dose
- Minimum detectable levels (MDLs)
- Instructions for reconstructing dose

External Dosimetry

- Dosimeter technology
 Beta/photon 1951 to present
 Neutron 1951 to present
- Calibration procedures
- Exchange frequency
- Workplace radiation fields
- Exposure geometry

In Conclusion

- Developing a usable Site Profile is an important task.
- Site Profiles are living documents.
- Additional information is being sought and will be used when it adds to the document.
- Send comments directly to NIOSH.

Sending Comments to NIOSH on Site Profile Documents

- NIOSH welcomes comments from all interested stakeholders (organized labor groups, worker advocacy groups, claimants, etc.) on the Site Profile documents.
- Please include the name of the site, the title of the document, and the Site Profile number when submitting comments.

Sending Comments to NIOSH on Site Profile Documents

Send all comments to:

Department of Health and Human Services
National Institute for Occupational
Safety and Health (NIOSH)
Robert A. Taft Laboratories MS-C34
4676 Columbia Parkway
Cincinnati, OH 45226
Fax: (513) 533-8230

email: siteprofile@cdc.gov

NIOSH Website

You can find information about the NIOSH Office of Compensation Analysis and Support (OCAS) and the EEOICPA at their website http://www.cdc.gov/niosh/ocas/.